
MATHEMATICS OF COMPUTATION 
VOLUME 46. NUMBER 173 
JANUARY 1986. PAGES 191-202 

A Class of Cubic Splines Obtained 
Through Minimum Conditions 

By D. Bini and M. Capovani 

Abstract. A class of cubic spline minimizing some special functional is investigated. This class 
is determined by the solution of a quadratic programming problem in which the minimizing 
function depends linearly on a parameter a < 2. For a = 1/2 natural splines are obtained. 
For a = -1 the spline minimizing the mean value of the third derivative is obtained. It is 
shown that this spline has the best convergence order. 

1. Introduction. Suppose that we are given a function f E C4[a, b] and a mesh 

(={a = x < xl < ...< xn= b}, such that xi = x0 + ih, h = (b - a)/n. A 
function sn (x) is called a cubic spline interpolant to f (x) with respect to ln if: 

s is a cubic polynomial on [xxi ], i = 1 29 . . ., n; 

(1.1) SEC lab]; 

Sn(Xi) = Yi, yi = f(xi), i = 0,1,..., n. 

The importance of cubic spline interpolation is described in detail in [1]. Conditions 
(1.1) lead to a system of n - 1 equations and n + 1 unknowns. Two more equations 
can be given in various ways. For example, if we know f'(x0) and f'(x,,) or f "(x0) 
and f "(x) we can set s'(xi) = f'(xi) or s"'(xi) = f "(xi), i = 0, n, obtaining in 
this way convergence of s(iA(x) to f (i)(x) of order O(h4'), i = 0, 1, 2, 3 uniformly 
over [a, b] [5]. In the absence of such information, usually the following equations 
are considered 

(1.2) Sn'(Xo) = Sn'(Xn) = 0. 

The kind of spline function obtained in this way is known as natural spline,and it 
is the spline interpolant to f (x) minimizing the functional 

F2(s) = f (s(x)) dx, 

which is related to the mean curvature of the graph of the function s(x). For natural 
spline functions the following result holds [4] 

s(i)(x) -f(l)(x) = O(h2-i), a < x < b, i = 0,1; 

s(i)(x) - f(')(x) = O(h4-), a < x 9 b, i = 0,1,2; 
- a = b - b = O(hlogh). 
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Recently, another variational condition has been analyzed [3]. The spline minimiz- 
ing the functional 

F1(s) = b (s(x))2 dx, 

has been shown useful for computational purposes. 
In this paper we consider cubic splines which minimize some special functionals. 

This set of splines is obtained by considering the functionals F1 and F2, two other 
functionals Fo and F3, involving the functions s(x) and s "' (x) respectively, and 
convex combinations of Fog F1, F2 and F3. 

In Section 2, we show that such splines can be obtained by solving a quadratic 
programming problem in which the minimizing function depends linearly on a 
parameter a, -1 < a < 31/32. In particular, for a = 1/2 we find the natural spline, 
for a = 7/8 the function minimizing F1. We widen the class by showing that for any 
a < 1 the quadratic programming problem has a solution and that there exists a 
positive integer no such that the quadratic programming problem has a solution for 
any n >? no if and only if a < 2. 

In Section 3, using the properties of a special class of matrices defined in [2], we 
determine the best spline interpolating f in the class of splines depending on a, 
a < 2. We show that the best spline in this class is the spline which minimizes the 
functional 

n,-1 

F3(s) = E j (s"(x)) dx, 

obtained with a = 1. For this spline we get the following result 

s(i)(x) -f(')(x) = O(h3-), a < x < b, i= 0,1,2; 

is(')(x) -f ')(x) = O(h4'), a < x 9 b, i = 0,1,2,3, 

- a = b - b = O(hlogh). 

Thus, one gains one order of convergence and the convergence of one more 
derivative, compared to natural splines. 

2. Preliminaries. Following Stoer & Bulirsch [5] we set 

sn(x) = M1(X1?1-x)3/(6h) + - (XXj)3/(6h) + aj(x - xj) + Aj, 
(2.1) xi<1 x1j+, j=O, ... ,n-1; 

so that, from (1.1), we obtain 

23 = f(x) - Mjh2/6; 
(2.2) 

a. = (f(xi+) -f (x))/h - h(Mj+ Mj)-6; 

where the (n + 1)-vector M = (Mj) fulfills the relation 

(2.3) AM= b= 
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where A is the (n - 1) x (n + 1) matrix 

1 4 1 
1 4 1 

(2.4) A= 4 1 

1 4 1 

b = (bl), bi = 6(f (x,+1) - 2f (xi) + f (x,1))/h2, i = 1,2, . .,n - 1. 

Consider the following functionals 

1?-1 
X+ SX 

Fo(s) = 
_ f (s(x) -ri(x))2 dx, 

1=0 A, 

ri(x) = (x - xi)(y,+I - y1)/(x+1- xi) + Yi; 

(2.5) FX(s) = f (s'(x)) dx; 

F2(s) = f (s"(x)) dx; 

F3(s)= E j (s"(x)) dx. 
,=0 x 

The functional F0112 is related to the area included between the graph of s(x) and 
the line obtained by connecting the point (xl, y) to the point (x+,1, y+,i), i = 

0, 1,..., n - 1. The spline which minimizes F0 is as close as possible to this 
polygonal line. 

The functional Fy712 is an average of the slope of the graph of s(x) and the spline 
which minimizes F1 has been analyzed in [3]. 

The functional F2/2 is related to the mean curvature of the graph of s(x) and the 
spline minimizing F2 is known as the natural spline; it satisfies s"(x0) = s"(xn) = 0. 

The functional F112 has a less easy geometric interpretation and we can look at it 
as a number related to the mean curvature of the graph of s'(x). 

Other functionals can be obtained by taking any convex combination of Fi(s), 
= 0,1,2,3. 
By direct computation we can show the following result: 

PROPOSITION 1. Consider the quadratic programming problem: 

(2.6) {Min M=Aa M 

~AM = bg 

where A and b are defined in (2.4), M = (Mi), i = 0, 1,. .., n, is an (n + 1)-vector 
and a is the (n + 1) x (n + 1) matrix given by 

1 a 
a 2 a 

a 2 
Aa 

2 a 
a I1 



194 D. BINI AND M. CAPOVANI 

Then (2.6) has a solution if -1 < a < 31/32 and this solution defines, through 
(2.1), (2.2), a cubic spline interpolating f (x) which minimizes the functional 

F0 if a= 31/32, F1 if a = 7/8, 
F2 if a = 1/2, F3 ifa=-1, 

3 

a OFi, if -1 < a < 31/32, for some 0i = 0,(a) > 0. 
i=O 

A similar result holds also in the case in which the knots x, are not uniformly 
spaced. 

It is interesting to point out that the same matrix formulation (2.6) allows us to 
deal with all the different conditions given in (2.5). 

Two questions arise at this point: 
- Are there other values of a, besides those in the range [-1, 31/32], for which the 

problem (2.6) has a solution? 
- Is there a best value of a in the range of the feasible values, for which the 

convergence of s U) to f(i) is best possible? 
In order to deal with these two questions we introduce a special class of matrices 

which has been used in [2]. 
Let T7m be the linear space spanned by the set {I, H, H2,..., Hm-1}, where 

H = (h,j) is the m X m matrix such that hii~l = h,,, i = 1, i = 1,2,..., m - 1, 
h = 0 otherwise. Observe that Tm is closed under the row-column product, and 
AB = BA for any A, B e Tmp that is}Tm is a commutative algebra; moreover, A E Tm 

if and only if 

(2.7) AH-HA = 0. 

Writing down condition (2.7), we get 

a, J+l + aj1jj = ai+,,, + al1 J. 

ao01 = aj0 = am+,,j = ai m+j = 0, I 

The relation, called cross-sum condition, allows us to build up all the entries of 
any matrix A E Tm starting with the first row, or the first column, of A. Moreover, 
we have the following properties [2]: 

If A eTm, then: 

A is symmetric, i.e., aj = aj; 
A is persymmetric, i.e., a,,j = any-.+ 1 -j+ 1; 

(2.8) If F = ( 2/(m + 1) sin(7rij/(m + 1))) then F is 

symmetric and orthogonal and FAF is diagonal; 
The eigenvalues of H are given by 2cos(,ri/(m + 1)). 

Now consider problem (2.6) and partition the matrices A and Aa in the following 
way: 

A [ A a 1, A =[ a A 0 
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Since 
(2.9) a 2I + aH, A=4I + H 

we have Aap A E Tm, m = n-1. Expressing the components M1, M2,..., Mn-1 as 
a function of MO and Mn, by using the constraints AM = b and substituting in the 
quadratic function, we get 

MTAaM = (Moa M) ] -2(M0, Mn) rP1] 
(2.10a) fl T pjMn LP2I9 

qp = eTB e1 = e1 Be -; e= eTBaeni = e T Baei; 

(2.1Gb) p= e (Ba. + oa -I)b; P2 =en- I(Ba + a 1I)b; 

Ba = I - 2aA1 + A1-AaA1- E mTni-; 

where e1, e,11 are the first and the last columns of the (n - 1) x (n - 1) identity 
matrix. Relations (2.10) hold in view of the symmetry and persymmetry of the 
matrix Ba E 

Th-1- 
Since the 2 x 2 matrix in (2.10a) is a principal submatrix of Ba, it is positive 

definite whenever Ba is positive definite. This fact allows us to prove the following 

PROPOSITION 2. For any a < 1, the problem (2.6) has a solution. 

Proof. It is sufficient to prove that if a < 1 the matrix Ba is positive definite. Now 
the eigenvalues Xi of Ba can be obtained by (2.10b), (2.9) and (2.8). We have in fact 

Xi= 1 +(2 - 2a(4 + ci))/(4 + 2ci)2, c i= cos(7ri/n). 
Therefore, Ba is positive definite if and only if a < (9 + 2c2 + 8ci)/(4 + ci). 

Now, since (9 + 2c2 + 8ci)/(4 + ci) > 1, i = 1, 2, .. ., n - 1, we get the result. 
We can further widen the set of a for which problem (2.6) has a solution if we 

look at this issue from an asymptotic point of view. First we must compute the 
values to which qp and 4 converge as n tends to infinity. 

LEMMA 1. We have 
= (2- a)/V ? O, O I I < (2/(3n 2))(1 + I a|); 

= 0 + 04, 10| ? < (16/(3n 2))(1 + |a.l) 

Proof. Since Ba E T,,-1, from (2.8). (2.9), (2.10b) we have 

FBaF = Diag(Xl, X2, * 
Xn-J9 

= 1 +(2 - 2a(4 + ci))/(4 + 2ci)2, ci= cos(ri/n). 
Therefore, (p = (Pi + aP2, = V1 + a42, where 

nI-i 
= (2/n) E (1 + 2/(4 + 2ci)2)s2, 

(2.11a) i=1 
P- 1 

= (2/n) E ((8 + 2ci)/(4 + 2ci)2)s2, si = sin(ri/n); 
1=1 

n-1 

= (2/n) (1 + 2/(4 + 2ci)2)(-_) i+si2 

(2.11b) 

P2 = (2/n) ((8 + 2ci)/(4 + 2ci)2)(-1)i+ls2. 
i=2 
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Moreover, the quantities (2.11a) can be viewed as the result of applying the 
trapezoidal quadrature formula to suitable continuous functions with step V/n on 
the interval [0, g]. Therefore, we get (see [5, p. 121]) 

P= (2/T)f (1 + 2/(4 + 2cosx)2) sin2xdx + k,/(6n 2); 

= (2/Xr ) ((8 + 2 cos x)/(4 + 2cos x)2) sin2xdx + k /(6n2); 

where IkI, i = 1,2, can be bounded by the maximum absolute value which the 
second derivative of the corresponding integrand function takes on over [0,7r]. 
Therefore, by evaluating the primitives and the second derivatives of these functions, 
we get 

(2.12) (P1 = 2/ + k/(6n 2), jk1 < 4, 

T2 = -1/V + k2/(6n2), Ik2 1< 3. 

Concerning 4t, and '2, observe that each formula in (2.11b) can be viewed as the 
difference of two quadrature formulas applied to the same function with the same 
step, but with different knots. Therefore, we have 

(2.13) Aj = 0 + 4k3/(3n2), Ik3 1< 4, 

'2 = 0+ 4k4/(3n2), Ik41< 3. 

Now we are ready to prove the following 

PROPOSITION 3. There exists a positive integer no such that, for every n >? no, the 
problem (2.6) has a solution for any f E C4[a, b] if and only if a < 2. 

Proof. The assertion follows from Lemma 1, since the existence of a solution, for 
any f E C4[a, b], is equivalent to the positive definiteness of the matrix [, 'j]. 

3. Convergence. From relation (2.10a), under the hypothesis a < 2, we have that 
the point in which the function MTAaM takes on its minimum value is given by: 

[MO pep+llp 1 
LMnJ L T, F) P2,' 

that is, 

(3.1) MO = -(P-P2 - (p)/(992 -2), Mn = -(PPI - TP2 )/(T _ '2). 

Our aim is to find out how MO and M, depend on a, then determine the value of 
a for which one obtains best convergence. Since we already know (p and 'P, we have 
to compute p1 and P2. As a first step of this evaluation, observe that from (2.10b) 
we have 

n-i 

P1= EuAb, u = (u), u = (Ba + a?-1-I)ei. 
i~1 

Now, since B a + aA1 - I = 2(1 - 2a)A-2 we have 

u = 2(1 - 2a)A42e,. 
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Moreover, since A-2 E Tn-1 is symmetric and persymmetric, we have that the i th 
component of A- 2e - 1 is equal to the i th component of A-2e 1; therefore 

n-1 n1-1 

Pi = 2(1 - 2a) E vibi, P2 = 2(1 - 2a) E Vnib1, 
(3.2) i=i i=i 

v = (Vi), v = el 
Now our task has been reduced to the computation of b and v. As far as the 

vector b is concerned we have the following 

LEMMA 2. Iff E C4[a, b] and k = maxa<x <bIf(4)(x), then 

bi = 6(f"(a) + ihf "'(a) + h2yi), bn-i = 6(f"(b)- ihf "'(b) + h283), 

I-yi 18J < (1/12 + i2/2)k. 
Proof . In view of (2.4), applying Taylor's formula to f (x) at the point x1 with step 

h and -h yields 

bi = 6(f ,(Xi) + ih 2), ti I < k/12. 
Applying Taylor's formula again to the function f"(x) at the point a and b with 
step ih and -ih, respectively, yields 

f "(xi) = f "(a) + ihf "' (a) + ((ih )2/2) ,i 

f "(x,,-I ) = f "(b) - ihf "'..(b) + ((ih )2/2) vi, lqi 1, Iv, IvI < k, 
which completes the proof. 

Concerning the computation of the vector v, we use the properties of class Tm to 
prove the following 

LEMMA 3. Let d = (2 - ). Then the vector v = A-2el satisfies the relation 

vi = (-1)1+lid'1(l - d2n-2i)/(l - d2) + ,U, Iuil < n2dn+1. 

Proof. First observe that A = 41 + H and that the matrix C = 41 - H satisfies 

C = DAD, where D = Diag(1, -1, 1, -1,... , (-l)n). Therefore, 
00 2 

C-2 = (1/16) E Hi/4i 
j=0 

has positive entries and, since A-2 = DC-2D, we have vi = (-l)'+1jvj where IviI are 
the elements of the first row of C - 2. 

Now, in order to compute Ivil, observe that the elements ci of the first row of C-1 
are given by ci = - di- 1/dn- 1, where di satisfies the difference equation 

di+1 = 4di - di-2, do = 1, d1 = 4. 

By solving the above recurrence, we get di = (d-'-1 - di+1)/(2VY), where 
d = (2 - VY). Hence 

(3.3) ci = (d' - d2n-i)/(l - d2n) = di + y, yj < dn+l 

Now set C-1 = G + E, where G E Trn-1 is defined by its first row gl j = di. Since 
C e Tn - 1, then E E= Tn- 1 hence GE = EG and, setting IvI = (Ivi1), we have IvI = 

(G + E)2e1 = (G2e1 + w), w = 2EGe1 + E2e1. Therefore jjwjj < 211Ejj IjGe1lj + IjEjj 
jjEe1lj, where jjwjj = maxlwil and IjEjj = max.Y n-l>leijl. Now, from (3.3) we have 

IIEelII < d 1, IjGe1lj < d and, using the cross-sum condition, jEjj 
whence jjwjj < dn+2n2/2 + d2n+2n2/4 < n2dn+.1 
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Now, to complete the proof, we must still show that the elements of z = G2e1 are 
given by z, = id"' (1 - d2n-2i)/(1 - d2). 

We proceed by induction on i. The result holds for i = 1 and i = 2, by 
construction of G. Suppose that it holds for r and r - 1; by the cross-sum condition 
we have 

n-1 n-1 

Zri = E i = E d'(g>,g-d + gri~ -gr-l,i) 
i=i 1=1 

= d(Zr- dn-lgrn-l) + d-l(Zr -dgrl) - Zr-i 

Sincegr n-1 = d we get 

Zr+i = zr(d + d-')- Zr - d2n-r dr 

and, by the inductive assumptions 

Zr+1 = rdr+l(l - d2n-2r)(d + d-)/(1 - d2) 

-(r - 1)dr(l -d2n-2r+2)/(1 -d2) - d2n-r _ r 

= (r + 1)dr+2(1 -d2n-2r-2)/(1 - 2 

which completes the proof. 
From the above lemma we get the following relation: 

= ((-1)'+'id`'+ (1 - d 2) + fJ), IJ < 2n2dn+'. 

Now we are ready to compute Pi and P2. From the above relation, Lemma 2 and 
(3.2) we have 

Pi = 12(1 - 2a)(af"(a) + hpf "'(a) + wih2) + O(n3dn), 

P2 = 12(1 - 2a)(qf"(b) + hpf "'(b) + W2h2) + O(n3dn), 

where 
n-i n7-i 

a = L (-1)'+1id`'/(1 - d2) + 
i=i i=1 

n-i n7-i 

P= Z (-l)'+li2dI+ /(1 - d2) + i 

1=1 1=1 

n-1 

o1l 1IW21I k E (1/12 + i2/2)id' +/(1 - d2). 
i=1 

Now, by using the difference equation technique (see [5, p. 438]) it is easy to prove 
that 

E (-1)1+1id`1i/(1 - d2) 
I=i 

= V/36 + dn+ (n - d/(d + 1))/((l + d)(1 -d2)), 
n -1 

E (l)'+li2id+i /(1 - d2) 
i=li 

- 1/36 + (n2/(1 + d) - 2nd/(1 - d)2 + d(d - 1)/(1 + d)3)dn+/(1 -d2) 

00' 00 

(041, I@21 < k/12 E idi'+/(1 - d2) + k/2 i3di'+/(1 - d2) 
i=l i=l 

= (k/ 12 )(1/24 ? 1) = 25k/(24 1) < k/3 
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where, for the sake of simplicity, we have assumed n even. Therefore, we have 

(3.4) P1 = (V3/3)(1 - 2a)(f"(a) +(1/x/)hf "'(a) + O(h2)), 

P2 = (V3/3)(1 - 2a)(f"(b) +(1/V)hf "'(b) + 0(h2)). 

From relations (3.4), (3.1) and Lemma 1, we finally get the following 

PROPOSITION 4. The second derivatives MO, Mn at the points a and b, respectively, 
of the spline function obtained by (2.6), are given by 

MO = ((2a - 1)/(a - 2))(f"(a) +(1/x/3)hf "'(a)) + 0(h2), 

Mn = ((2a - 1)/(a - 2))(f"(b) +(1/x/3)hf "'(b)) + 0(h2). 

We are now ready to determine the value of a for which one obtains best 
convergence of sn(x) to f(x). For this purpose we use the following result [4]. 

PROPOSITION 5. If s, (x) is any cubic spline interpolating f (x) E C4 [a, b], then 

max s0)'(x) - f(')(x) < (1/23-j)h2'-jL, j = 0, 1,2, 
X, < X <X, +1 

where L, = (1/8)h2k + max{ f"(x,) - Mil, jf"(x,+1) - M,1?} and If (4)(X)% < k, 
x E [a, b] 

In view of Proposition 5 we have to determine a in such a way that the values 

if"(x) - Mil are as small as possible. 
Let R be the (n + 1)-vector whose components are f"(x1), i = 0, 1,. .., n, and 

consider the vector R - M. Using the cubic spline condition (2.3) and the definition 
of A in (2.9) yields 

R - M = (f "(a) - MO, wTA-1, f "(b) _-Mj 
T 

(3.5) w = AR-b + Moe, + Mne1-, 

k (f "(x1),I f "(X2)9 * f(n1)) 
T 

Since, by Taylor's formula, 

f "(xi) = (f (x,1) - 2f(xi) + f(x,+1))/h2 +(h2/24)f(4)(( ) +(h2/24)f(4)(qJ, 

Xi < (I < Xi+l, xi-1 < ql < Xi, 

we can write 

AR - b = (-2f "(x1) + f"(x2) + (h2/2)01, 

f "(x1) -2f "(x2) + f "(x3) + (h 2/2)02,..., 

f(Xn_3) - 2f"(xn-2) +f"(xnJ) + (h2/2)6n-2, 

f"( X- 2)- 2f"(x,, -1) +(h2/2)o,7-1)T 

IO1I< k= max If(4)(X) . 

Again using Taylor's formula, we find 

f ,(Xi+l) - 2f"(xi) + f"(x,1 ) = (h2/2)( f (4)(tJ) + f (4)(i )), 
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Therefore, we have 

w = (MO - 2f"(xl) f "(X2) (h 2/2)01, (3/2)h 2#2,..., (3/2) h2n- 2, 

(3.6) f"(xn2) - 2f"(xn1) + Mn +(h 2/2)On1) T, 

IPilI k. 

Now, from (3.5) and (3.6), the value of a for which we have the best uniform 
convergence on [a, b] is a = -1. In fact, in this case, since from Proposition 4 

MO = f"(a) +(h/V)f "'.(a) + 0(h2), 

M, = f"(b) +(h/3)f "'(b) + 0(h2), 
we have 

R -M= (-(h/lv4)f "'(a) + 0(h2), wT1-, -(h/Vr)f "'(b) + 0(h2))T, 

(3.7) w = ((hl/v)f "'(a) + 0(h2), (3/2)h2#2,..., 

(3/2)h2 #_2, (h/'vY)f "'(b) + 0(h2))T. 

Using relations (3.7), we can prove the following 

PROPOSITION 6. The spline function S,(X) obtained by (2.6) with a = -1 fulfills the 
conditions: 

js(i) (x) -f(')(x)I< (h/2)3-i(y + 0(h)), i = 0,1,2, a < x < b, 

where y = max( f .'.(a)j, If .'' (b)j). 

Proof. Since 

00 

11 11 = |(1/4) E (-1) 'H'14| 
i=O 

00 00 

(1/4) E (114')|lHIli = (1/4) E1/2'= 1/2, 
i=O i=O 

we have jA wjj < (1/2)j1wjj. Therefore, from (3.7) we get 

max | "(xi) - Mi I < (h/v'3) max(I f "' (a) 1, f .."' (b) 1) + 0(h2), 

which, in view of Proposition 5, completes the proof. 
We are now looking for numbers a', b', such that a < a' < b' < b and 

max sMi)(x) -f(')(x) |=_ 4-i)_ a' <x <b'In 

For this purpose, observe that from (3.7) we have 

z = i-1w = ((h/IV)f "'(a) + 0(h2))Aj1e1 

(3.8) +((h/V)f "'(b) + 0(h2))Alen +?(3/2)h24-ly, 
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Moreover, from the proof of Lemma 3, we have that the elements of the first 
column of A4 are given by (-1)"'i(d' - d2n-i)/(l - d2), d = 2 - v3. There- 
fore, since 1IA -ll < 1/2, IIyl < k and A E Tn-l we have 

jzij I (3/4)h2k +(h/v'Y)(y + 0(h))(d - d2n-' + d n- dn+l)/(1 - d 

where y = max IIf"'..(a)j, If 
... 

(b)j}. 
Now, if log h/log d < i < n - log h/log d, then 

(dl - d2n- + dn- - dn+')/(l - d2n) < d1 + dn- + 0(dn) < 2h + 0(d7); 

whence 

(39) | z, I h2((3/4)k + (2/VY) y) + 0(h3), 

if log h/log d < i < n - log h/log d. 

Now we can apply Proposition 5 to get the following result. 

PROPOSITION 7. The spline function obtained by (2.6) with a =-1 fulfills the 
conditions 

| ()-(x) - f(')(x) I< (1/23-')h4-'((7/8)k + (2/VY)y + 0(h)), 

a' <xb', i=0,1,2; 

|S(3) (X) _ f (3) (X) |I< 2h(k + 2-y/l) a' < x < b', x 0 x;, j =0, 1,.., n; 

where a' - a = b - b' = h log h/log d and k = maxa<x b Ift4 (x)( )Iy = 

max{ jf "' (a)l, If "'(b)j}. 

Proof. In view of (3.9) and (3.5) we have 

max | f"(x1) - MJ | h2((3/4) k + (2/V3) y) + 0(h3). 

Therefore, from Proposition 5, we have the result relative to s(i) - f - )(X), 
i= 0 1, 2. In the case of the third derivative, observe that the function g(x) = s"'(x) 

-f"(x) belongs to C2[XI X 1+] therefore, applying Taylor's formula at the point 
x e [xj, x+ I1] with increment 

f -h/2 if x > (xi+1 + x1)/2, 

h/2 if x < (xi+1 + xi)/2, 

we get 

Sn" (x -f "'(x) = (sn'(x + ) )-f "(x + ) -s '(x) + f"(x))/h 

_ (hil2)f (4) ((), 

where ( belongs to the inverval with endpoints x and x + h. Therefore, 

s."(x) -f "'(x)| < max s"'(x) -f"(x)I/h +(h/4)k < 2h(k +(2/1)y). 
a'6x~b' 

Final Remarks. We have shown that, among the splines interpolating to f(x) and 
satisfying (2.6), the best one is the spline S(x) minimizing the functional F3. The 
computation of S(x) can be performed according to the following steps: 

(1) Compute p = 67En-11vb, P2 = 6n-11vn-ibi, (see (3.2)); 
(2) Compute MO and Mn by means of (3.1); 
(3) Solve the linear system AM = b - M0e, - Mnlen-l1 
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Compared to natural splines, here we have to compute MO and M, with a 
computational overhead of 2n + 0(1) multiplications. In this analysis we have 
assumed that the numbers p, 4 and vi, which do not depend on the data bi, are 
given constants which can be precomputed once and for all. Actually, in view of 
(2.11a), the evaluation of m and %P costs a linear time. Moreover, since the matrix 
vector product Fa, where F is the matrix in (2.8), can be computed by means of fast 
Fourier transform algorithms, the evaluation of v = A-2el = FD- 2Fel, D = 

diag(4 + 2 cos(ri/(n + 1))), can be carried out in O(n log n) arithmetic operations. 
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